Polymerization of nontemplate bases before transcription initiation at the 3' ends of templates by an RNA-dependent RNA polymerase: an activity involved in 3' end repair of viral RNAs.

نویسندگان

  • H Guan
  • A E Simon
چکیده

The 3' ends of RNAs associated with turnip crinkle virus (TCV), including subviral satellite (sat)C, terminate with the motif CCUGCCC-3'. Transcripts of satC with a deletion of the motif are repaired to wild type (wt) in vivo by RNA-dependent RNA polymerase (RdRp)-mediated extension of abortively synthesized oligoribonucleotide primers complementary to the 3' end of the TCV genomic RNA. Repair of shorter deletions, however, are repaired by other mechanisms. SatC transcripts with the 3' terminal CCC replaced by eight nonviral bases were repaired in plants by homologous recombination between the similar 3' ends of satC and TCV. Transcripts with deletions of four or five 3' terminal bases, in the presence or absence of nonviral bases, generated progeny with a mixture of wt and non-wt 3' ends in vivo. In vitro, RdRp-containing extracts were able to polymerize nucleotides in a template-independent fashion before using these primers to initiate transcription at or near the 3' end of truncated satC templates. The nontemplate additions at the 5' ends of the nascent complementary strands were not random, with a preference for consecutive identical nucleotides. The RdRp was also able to initiate transcription opposite cytidylate, uridylate, guanylate, and possibly adenylate residues without exhibiting an obvious preference, flexibility previously unreported for viral RdRp. The unexpected existence of three different repair mechanisms for TCV suggests that 3' end reconstruction is critical to virus survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of genomic plus-strand RNA synthesis from DNA and RNA templates by a viral RNA-dependent RNA polymerase.

In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polym...

متن کامل

Selection of 3'-template bases and initiating nucleotides by hepatitis C virus NS5B RNA-dependent RNA polymerase.

De novo RNA synthesis by hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase has been investigated using short RNA templates. Various templates including those derived from the HCV genome were evaluated by examining the early steps of de novo RNA synthesis. NS5B was shown to be able to produce an initiation dinucleotide product from templates as short as 4-mer a...

متن کامل

Minimal template requirements for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus.

From mutational analysis of the 3'-terminal hairpin of turnip yellow mosaic virus (TYMV) RNA and use of nonstructured C-rich RNA templates, we conclude that the main determinant in the tRNA-like structure of TYMV RNA for initiation of minus-strand synthesis by the viral RNA-dependent RNA polymerase (RdRp) is the non-base-paired 3' ACC(A) end. Base pairing of this 3' end reduces the transcriptio...

متن کامل

RNA polymerase I catalysed transcription of insert viral cDNA.

RNA polymerase I has been used for transcription of influenza hemagglutinin (HA) cDNA precisely linked in the anti-sense configuration to both mouse rDNA promoter and terminator segments. In transcription reactions based on Ehrlich ascites cell nuclear extracts, specific uniform RNA products are synthesized in high rates that are comparable to original rDNA template transcriptions. Primer exten...

متن کامل

The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro.

The virus-encoded RNA-dependent RNA polymerase (RdRp), which is required for replication of the positive-strand RNA genome, is a key enzyme of members of the virus family Flaviviridae. By using heterologously expressed proteins, we demonstrate that the 77 kDa NS5B protein of two pestiviruses, bovine viral diarrhoea virus and classical swine fever virus, and the 100 kDa NS5 protein of the West N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 23  شماره 

صفحات  -

تاریخ انتشار 2000